Tag Archives: anaerobic digestion

xxx V. Dubrovskis, I. Plume and I. Straume
The production of methane from the straw pellets with addition of enzymes
Abstract |
Full text PDF (623 KB)

The production of methane from the straw pellets with addition of enzymes

V. Dubrovskis*, I. Plume and I. Straume

Latvia University of Life Sciences and Technologies, Faculty of Engineering, Institute of Energetics, Cakstes blvd. 5, LV3001, Jelgava, Latvia
*Correspondence: vilisd@inbox.lv

Abstract:

Biogas production requires much cheaper raw materials. The use of straw, as not always the full use of agricultural residues, increases the methane yield in pelletised form compared to non-pelletised straw. Lack is the high ratio of carbon to nitrogen content of straw, which leads to a slow and incomplete breakdown of the matter, and less producing substances from which bacteria produce methane.Variety of additives can be used to improve anaerobic digestion process. This article shows the results of the study, where the enzymes alpha amylase and xylanase and catalysts Metaferm and Melafen mixture are used for the digestion process echancement. Investigation was provided in 16 bioreactors operated in batch mode at 38 °C. Additives were filled into 14 bioreactors and only inoculum were filled into two bioreactors for control. The yield of biogas from straw pellets without additives was 0.655 L g-1DOM and methane 0.301 L g-1DOM after 34 days of anaerobic digestion. The yield of biogas from straw pellets with added alpha amylase was 0.652 L g-1DOM and methane 0.318 L g-1DOM. The yield of biogas from straw pellets with added xylanase was 0.689 L g-1DOM and methane 0.347 L g-1DOM. The yield of biogas from straw pellets with added Metaferm and Melafen mixture was 0.638 L g-1DOM and methane 0.254 L g-1DOM. The study demonstrates that the adding of enzymes increases the production of methane.

Key words:

, , , ,




xxx V. Dubrovskis, I. Plume and I. Straume
Use of ethanol production and stillage processing residues for biogas production
Abstract |
Full text PDF (787 KB)

Use of ethanol production and stillage processing residues for biogas production

V. Dubrovskis*, I. Plume and I. Straume

Latvia University of Life Sciences and Technologies, Liela street 2, LV 3001 Jelgava, Latvia
*Correspondence: vilisd@inbox.lv

Abstract:

In Latvia, ethanol is produced mainly from wheat grains. The production process involves the formation of the by-products of wheat bran, grains residues and stillage. By-products from production of alcohol distilling dregs (stillage) contain much organic matter therefore could be useful for the production of the biogas The product with high protein content usable for feed can be produced from the stillage too. A liquid residue is formed during the production process. Purpose of study is the assessment of the methane volume obtainable from the stillage processing residue mixed with wheat brans and grains residues in anaerobic fermentation process and from wheat brans and grains residues mixed only with inoculum. Investigation was provided in 16 bioreactors operated in batch mode at 38 °C. Stillage processing residues mixed with the wheat brans and inoculum were filled into 4 bioreactors, mixed with grains residues were filled into 4 bioreactors and only inoculum was filled into two bioreactors for control. Wheat brans with inoculum were filled into 3 bioreactors. Into others 3 bioreactors were filled grains residues with inoculum. The yield of biogas from wheat brans was 1.151 L g-1DOM and methane 0.593 L g-1DOM after 30 days of anaerobic digestion. The yield of biogas from wheat brans with stillage processing residue was 1.098 L g-1DOM and methane 0.600 L g-1DOM. The yield of biogas from grains residues was 0.915 L g-1DOM and methane 0.451 L g-1DOM. The yield of biogas from grains residues with stillage processing residue was 1.01 L g-1DOM and methane 0.523 L g-1DOM. The study demonstrates that the investigated products are very good raw material for the production of methane. Stillage processing residue acted as a catalyst for the process.

Key words:

, , , , ,




1642-1648 V. Dubrovskis, I. Plume and I. Straume
Suitability of Common nettle (Urticadioica) and Canadian goldenrod (Solidagocanadensis) for methane production
Abstract |
Full text PDF (626 KB)

Suitability of Common nettle (Urticadioica) and Canadian goldenrod (Solidagocanadensis) for methane production

V. Dubrovskis*, I. Plume and I. Straume

Latvia University of Life Sciences and Technologies, Faculty of Engineering, Institute of Energetics, Cakstesblvd. 5, LV3001 Jelgava, Latvia
*Correspondence: vilisd@inbox.lv

Abstract:

Support for biogas production in Latvia was decreased. There is an urgent need to investigate the suitability of various inexpensive renewable biomass resources for energy production. Also, itis necessary to explore the possibilities to improve the anaerobic fermentation process with the help of various catalysts. Biocatalyst Metaferm produced in Latvia was used in previous studies with other biomass and showed increase in biogas and methane production. The article shows the results of studies on biogas (methane) production from chopped fresh Common nettle (Urtica dioica) and Canadian goldenrod (Solidago canadensis) biomass and effect of catalyst Metaferm in anaerobic fermentation process. The anaerobic digestion process was performed in 0.75 L laboratory digesters, operated in batch mode (38 ± 1.0 °C, 35 days). The average specific biogas or methane production per unit of dry organic matter added (DOM) from Common nettle was 0.709 L g-1DOM or was 0.324 L g-1DOM respectively. Average specific biogas or methane volume produced from chopped Canadian goldenrod in anaerobic fermentation was 0.548 L g-1DOM or 0.267 L g-1DOM respectively. Average biogas or methane yield from digestion of chopped Common nettle with 1 mL Metaferm was 0.752 L g-1DOM or 0.328 L g-1DOM respectively. Average specific biogas or methane yield from anaerobic fermentation of chopped Canadian goldenrod with 1 mL Metaferm was 0.624 L g-1DOM or 0.276 L g-1DOM respectively. Adding of catalyst Metaferm increases methane yield from chopped nettle or Canadian goldenrod by 1.2% or 3.4% respectively. All investigated biomass resources can be used for methane production.

Key words:

, , , ,




769-783 K. Krištof and J. Gaduš
Effect of alternative sources of input substrates on biogas production and its quality from anaerobic digestion by using wet fermentation
Abstract |
Full text PDF (837 KB)

Effect of alternative sources of input substrates on biogas production and its quality from anaerobic digestion by using wet fermentation

K. Krištof¹* and J. Gaduš²

¹Slovak University of Agriculture in Nitra, Faculty of Engineering, Department of Machines and Production Biosystems, Tr.A. Hlinku 2, SK949 76 Nitra, Slovakia
²Slovak University of Agriculture in Nitra, Faculty of European Studies and Regional Development, Department of Regional Bioenergy, Tr.A. Hlinku 2, SK949 76 Nitra, Slovakia
*Correspondence: koloman.kristof@uniag.sk

Abstract:

The aim of the study was to confirm the suitability of alternative input substrates for production of biogas in order to decrease the need of utilization of high quality maize silage. All of the experiments were conducted by employment of wet fermentation process in mesophilic conditions (temperature in fermentor 40 ± 1 °C) in experimental fermentor with volume 5 m3. The experiments were realised in operating conditions of biogas station designed for utilization of agricultural biowaste. The experiments were divided into two alternatives (I and II cycle) and one control input substrates. In the first alternative (I cycle) was daily dosage formed by 33 kg of Amaranth and 250 L of control manure mixture. In this cycle, more than 3–times greater specific production of biogas was observed with average methane content 63.9% in comparison with control manure mixture (80 : 20%, liquid manure and manure). In the second alternative (II cycle) was daily dosage formed by 19.5 kg of sugar beer cuts, 3.3 kg of maize silage, 1.9 kg of oil-seed rape moldings, 2.5 kg of glycerin and 250 L of control manure mixture. In this cycle, more than 5.9–times greater specific production of biogas was observed. The decrease in average methane content 55.1% however also decrease in average content of hydrogen sulfide (128 ppm) was observed as well. An unquestionable advantage for both tested alternative mixed substrates was increase in biogas production and its quality in comparison with control substrate based on manure. At the basis of these findings can be concluded that both tested alternative input substrate mixtures are suitable as co–fermentation substances with great potential to increase the biogas production and its quality in case of wet fermentation processes.

Key words:

, , , ,




688-695 V. Dubrovskis, I. Plume and I. Straume
Anaerobic co-fermentation of molasses and oil with straw pellets
Abstract |
Full text PDF (602 KB)

Anaerobic co-fermentation of molasses and oil with straw pellets

V. Dubrovskis*, I. Plume and I. Straume

Latvia University of Life Sciences and Technologies, Faculty of Engineering, Institute of Energetics, Cakstes blvd. 5, LV3001 Jelgava, Latvia
*Correspondence: vilisd@inbox.lv

Abstract:

The average grain and straw production in Latvia is increasing in last decade. Straw is not always managed properly and its utilisation in biogas plants can be considered as an alternative. Straw is not the best feedstock for methane production, because it has high C/N ratio. Co-fermentation with other biomass with higher N content can improve the methane production. Purpose of investigation is to evaluate the wheat straw pellets biomass suitability for production of the methane and effect of its co-fermentation with molasses, fried sunflower oil and catalyst Metaferm. The anaerobic digestion process for biogas production was investigated in 0.75 L digesters, operated in batch mode at temperature 38 ± 1.0°C. The average biogas yield per unit of dry organic matter added from digestion of wheat straw pellets was 0.540 L g-1DOM and methane yield was 0.285 L g-1DOM. Average biogas yield from co-fermentation of wheat straw pellets and molasses was 0.777 L g-1DOM and methane yield was 0.408 L g-1DOM. Average biogas yield from fermentation of wheat straw pellets with 1ml Metaferm was 0.692 L g-1DOM and methane yield was 0.349 L g-1DOM. Average biogas yield from co-fermentation of wheat straw pellets and sunflowers oil was 1.041 L g-1DOM and methane yield was 0.639 L g-1DOM. All investigated biomasses can be used for methane production.

Key words:

, , , , ,




398-409 A. Gruduls, K. Balina, K. Ivanovs and F. Romagnoli
Low temperature BMP tests using fish waste from invasive Round goby of the Baltic Sea
Abstract |

Low temperature BMP tests using fish waste from invasive Round goby of the Baltic Sea

A. Gruduls*, K. Balina, K. Ivanovs and F. Romagnoli

Riga Technical University, Institute of Energy Systems and Environment, Azenes street 12-K1, LV-1048 Riga, Latvia
*Correspondence: Arturs.Gruduls@rtu.lv

Abstract:

Round goby (Neogobius melanostomus) is an invasive fish species in the Baltic Sea. While meat can be used for human consumption, fish processing residues are considered as a waste. Within circular economy and bio-economy perspectives fish waste could be used as a valuable feedstock for biogas production. However, the research is mostly focused on evaluating biogas yield at mesophilic conditions (i.e. 37 °C). In this study the impact of low temperature on Biochemical Methane Potential (BMP) tests has been investigated. Round goby’s processing leftovers – heads, intestines and skin/bone mixture were tested in codigestion with sewage sludge. Anaerobic digestion (AD) was carried out in 100 mL batch tests at low temperature 23 °C and 37 °C conditions, over an incubation period of 31 days. The results show that AD at low temperature occurs twice as slowly as under 37 °C conditions. However, after 31 days the BMP values for 23 °C samples were only 2% lower than for high temperature samples. Heads and skins showed similar BMP values reaching on average 502 L CH4 kgVS-1 and 556 L CH4 kgVS-1 respectively. BMP for fish intestines was higher, reaching on average 870 L CH4 kgVS-1. Average BMP for mixes of fish heads, skins, intestines and bones was 660 L CH4 kgVS-1. Acquired BMPs were further compared with the theoretical BMPs from Buswell’s formula. Research results suggests that anaerobic digestion of fish waste under low temperature conditions could be feasible as the process still efficiently occurs, in fact opening a new opportunity to explore the overall sustainability of technologies based on these conversion processes.

Key words:

, , , ,




674–679 V. Dubrovskis and I. Plume
Suitability of oat bran for methane production
Abstract |
Full text PDF (207 KB)

Suitability of oat bran for methane production

V. Dubrovskis* and I. Plume

Latvia University of Agriculture, Faculty of Engineering, Institute of Energetics, Cakstes blvd 5, LV 3001 Jelgava, Latvia
*Correspondence: vilisd@inbox.lv

Abstract:

There is need to investigate the suitability of various cheaper biomasses for energy production. It is necessary to explore ways to improve the anaerobic fermentation process with the help of various catalysts. Biocatalyst Metaferm produced in Latvia previous studies with other biomass gave an increase in production. The purpose of study is evaluation of suitability of granular and crushed oat bran waste biomass for the production of methane and influence of catalyst Metaferm on anaerobic digestion (AD) process. The biomass anaerobic digestion process was investigated in 0.75 L digesters, operated in batch mode at temperature 38 ± 1.0 °C. The average biogas yield per unit of dry organic matter added (DOM) from digestion of granular oat bran was 0.400 L g-1 DOM and methane yield was 0.193 L g-1 DOM. Average biogas yield from digestion of crushed oat bran was 0.439 L L g-1 DOM and specific methane yield was 0.193 L L g-1 DOM. Adding of 1 mL Metaferm in substrates with not crushed or crushed oat bran increases specific methane yield by 0.227 L g-1
DOM or 0.236 L g-1 DOM respectively. Investigated oat bran can be used for methane production, but methane production was less than from traditional biomass, e.g. maize silage.

Key words:

, , , ,




830–847 L. Rocha–Meneses, M. Raud, K. Orupõld and T. Kikas,
Second-generation bioethanol production: A review of strategies for waste valorisation
Abstract |
Full text PDF (694 KB)

Second-generation bioethanol production: A review of strategies for waste valorisation

L. Rocha–Meneses¹, M. Raud¹, K. Orupõld² and T. Kikas¹,*

¹ Institute of Technology, Estonian University of Life Sciences, Kreutzwaldi 56,
EE51014 Tartu, Estonia
² Institute of Agricultural and Environmental Sciences, Estonian University of Life
Sciences, Kreutzwaldi 5, EE51014 Tartu, Estonia
*Correspondence: Timo.Kikas@emu.ee

Abstract:

This paper reviews second–generation biofuel production chain and focuses on its energetic, economic and environmental impacts. The biggest challenge in the production of bioethanol from lignocellulosic material refers to the biomass waste that is left over after the separation of bioethanol in the distillation process. This waste still has high energetic value and could be further utilised to add value to the production chain. Furthermore, the environmental impact of untreated waste from bioethanol production is very high, which also requires attention. Anaerobic digestion of bioethanol production waste has been proposed as a possible solution to utilise the energetic potential of this waste and lower its environmental impact.

Key words:

, , , ,




376–387 M. Collotta and G. Tomasoni
The economic sustainability of small–scale biogas plants in the Italian context: the case of the cover slab technology
Abstract |
Full text PDF (387 KB)

The economic sustainability of small–scale biogas plants in the Italian context: the case of the cover slab technology

M. Collotta* and G. Tomasoni

University of Brescia, Department of Mechanical and Industrial Engineering, Via Branze 38, IT25123 Brescia, Italy
*Corresponding author: m.collotta@unibs.it

Abstract:

The growing interest on renewable energies, together with the public financial incentive systems established in several countries, has driven a fast innovation in the field of energy technologies, with the main objective to increase their sustainability.
This paper focuses on the production of biogas from agro–residues and animal manure; with particular attention to small-scale plants.
Based on a real case located in northern Italy, and taking into consideration the Italian public  financial incentive system currently in force, the economic profitability of the cover slab technology is analysed, putting into evidence the main factors that affect it.

Key words:

, ,




069–078 V. Dubrovskis and I. Plume
Biogas from wastes of pumpkin, marrow and apple
Abstract |
Full text PDF (416 KB)

Biogas from wastes of pumpkin, marrow and apple

V. Dubrovskis* and I. Plume

Latvia University of Agriculture, Faculty of Engineering, Institute of Energetics, Cakstes blvd 5, LV 3001 Jelgava, Latvia
*Correspondence: vilisd@inbox.lv

Abstract:

A lot of vegetables and fruits, which have been grown in Latvia or were imported from foreign countries, become waste, often due to unconformity to the marketing standards or biodegradation process fouling during storage. Waste biomass piles emissions during storage that contributes to global warming. It is appropriate to use such biomass as raw material for anaerobic digestion. This article shows the results of studies on evaluation of suitability of vegetable and fruit waste biomass for the production of biogas. Anaerobic digestion was investigated in 0.75 L digesters, operated in batch mode at a temperature of 38 ± 1.0 °C. The average biogas yield per mass unit of dry organic matter added (DOM) from digestion of pumpkin biomass was 1.095 L g-1DOM and the specific methane yield was 0.422 L g-1DOM. Average biogas yield from digestion of marrow biomass was 0.768 L g-1ODM and the methane yield was 0.274 L g-1DOM. Average biogas yield from digestion of apple biomass was 1.020 L g-1DOM and the methane yield was 0.451 L g-1DOM. All investigated wastes can be a very good source for biogas production. Anaerobic digestion may be a solution to treat waste biomass from food production facilities or supermarkets.

Key words:

, , , , ,