Evaluation phenology, yield and quality of maize genotypes in drought stress and non-stress environments
Institute for Land Utilisation, Regional Development and Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, 138 Böszörményi Str., Hungary
*Correspondence: szelesa@agr.unideb.hu
Abstract:
The aim of the study is to examine the effect of agrometeorological indices (growing degree days, GDD; heliothermal unit, HTU; photothermal unit, PTU; hydrothermal unit, HYTU) on the phenology and yield (GY) of the Sushi (FAO 340) and Fornad (FAO 420) maize hybrids. Furthermore, it was also analysed how the amount of nitrogen and its application time affected the productivity and protein content (GP) of maize under drought stress (DS) and non-stress (NS) conditions. There were seven fertilizer treatments in the scope of the field experiment. Non-fertilized treatment (A0) spring basic treatment with 60 and 120 N ha-1 (A60, A120), and following the basic treatments, 30 kg N ha-1 top-dressing was applied in the V6 (V690, V6150) phenophase and then another 30 kg N ha-1 in the V12 (V12120, V12180) phenophase. Based on the GDD and PTU, length of the vegetation period of maize hybrids can be predicted. Under DS, the largest GY and GP was recorded in the same treatment for Sushi (V6150 kg N ha−1), and at different nutrient levels under NS: GY (A120) and GP (V6150). The highest GY of Fornad hybrid under DS was achieved with the A120 treatment while the highest GP with the V6150; in the case of NS V6150 kg N ha−1 was the most effective for both GY and GP. The + 30 kg ha-1 N fertilizer applied in the V12 phenophase did not improve GY and GP in either hybrid during the two growing seasons. The findings provide useful help for farmers to prepare for future environmental changes and to operate successfully.
Key words:
agrometeorological indices, grain protein content, grain yield, nitrogen fertilization, phenology