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Abstract. Because of different Brazilian climatic conditions and the different plant conditions,
such as the stage of development and even the variety, wide variation may exist in the crop
coefficients ( ) values, both spatially and temporally. Thus, the objective of this study was to
develop a methodology to determine the short-term using biophysical parameters of coffee
plants detected images obtained by an Unmanned Aircraft System (UAS). The study was
conducted in Travessia variety coffee plantation. A UAS equipped with a digital camera was
used. The images were collected in the field and were processed in Agisoft PhotoScan software.
The data extracted from the images were used to calculate the biophysical parameters: leaf area
index (LAI), leaf area (LA) and . GeoDA software was used for mapping and spatial analysis.
The pseudo-significance test was applied with p < 0.05 to validate the statistic. Moran's index (I)
for June was 0.228 and for May was 0.286. Estimates of values in June varied between 0.963
and 1.005. In May, the values were 1.05 for 32 blocks. With this study, a methodology was
developed that enables the estimation of using remotely generated biophysical crop data.
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INTRODUCTION

Brazil produces a significant share of coffee beans, contributing 63.4% of the world
production, with 10.5 million tons in the 2018/2019 crop (USDA, 2019). It is the largest
Arabica coffee producer, accounting for 46.9% of the world Arabica coffee production,
and is the second-largest Robusta coffee producer, contributing 16.5% of its world
production (USDA, 2019).

Some improvements in coffee management and production systems, such as
irrigation, have led to the development of the crop, enabling the crop to be introduced in
areas that were not previously suitable for coffee production. In addition, irrigation has
provided an increase in productivity (Bonomo et al., 2008). Even in traditional areas for
coffee crop production, irrigation can help reduce the effects of prolonged droughts
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during critical periods of water requirement by coffee (Silva et al., 2005; Lima et al.,
2010; Vicente et al., 2015).

For a better quantification of the amount of irrigation to be applied, the coffee water
intake is estimated mainly by the use of climatological variables, with the crop
coefficient ( ) being determined by the relationship between crop evapotranspiration
(ETc) that is evaluated experimentally; by reference evapotranspiration (ETo), obtained
by lysimeters or by the use of estimation models (Doorenbos & Kassan, 1979); or still,
by adapting the soil water balance (Camargo & Pereira, 1994).

In addition to being an indicator of great physical and biological significance, the
reflects the local climate and crop characteristics (Doorenbos & Pruitt, 1997), and it

depends on the architecture, plant cover, and plant transpiration (Sato, 2007; Oliveira et
al., 2007).

However, due to the different Brazilian climatic conditions, variation in the
values exist in the literature. Notably, the adoption of a single value may lead,
according to Silva et al. (2011), depending on the time of year, to over- or
underirrigation, both of which are detrimental to the crop. In addition, according to
Oliveira et al. (2007), several varieties of coffee, planting systems, and sizes exist;
therefore, a single value of should not be established, and agronomic experiments are
needed. Thus, values should be determined for the different phases of the coffee
phenological cycle, plant age, local climatic conditions, and crop management adopted
(Oliveira et al., 2007). However, agronomic experiments are time-consuming and
laborious.

The development of Unmanned Aircraft Systems (UAS) in the last decade has
enabled the acquisition of remote sensing images with a high spatial and temporal
resolution, as well as providing information with vegetation details and an observation
angle different from field observations. With this type of image, general mosaics are
possible, as well as Digital Elevation Models, Digital Terrain Models, and 3D Models
of the crop. Thus, the acquisition of plant biophysical data and information through
remote images from UAS could replace field sampling and agronomic experiments.

Thus, it is believed that it is possible to determine the of a coffee crop from
high-spatial-resolution images obtained by UAS.  Therefore, the present study aimed to
develop a methodology for estimating the crop coefficient ( ) in the short term by using
relationships between and biophysical parameters of coffee plants (leaf area, plant
density, and weed management); this was achieved by using data already available in
the literature and comparing it to determined from RGB (Red, Green, Blue) UAS
image data and from field data.

MATERIALS AND METHODS

The study was conducted in June 2017 and May 2018 in a 0.4 ha Travessia cultivar
coffee plantation, which was a remnant of an earlier experiment, whose treatments are
described by Caldas et al. (2018). This plantation is located in the city of Lavras, Minas
Gerais, Brazil (21°13'33"S, 44°58'17"W, altitude 936 m) (Fig. 1). The plantation was
established in February 2009 with 2.60×0.60 m spacing and is irrigated by drip
irrigation.
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Figure 1. Study area location and treatment delimitation.

According to the Köppen classification, the regional climate is Cwa type,
characterized by a dry season in the winter and a rainy season in the summer. The
average annual rainfall is 1,460 mm, and the average annual temperature is 20.4 °C, with
a minimum temperature of 17.1 °C in July and a maximum of 22.8 °C in February
(Dantas et al., 2007). For the UAS image bank, six ground control points (GCPs) were
evenly distributed throughout the field (Santos et al., 2019). The positions of the GCPs
and the sampled plants were taken using a differential global positioning system (DGPS;
Trimble Navigation Limited, Sunnyvale, California, USA), model SP60, with horizontal
and vertical precision of 0.07 m. Later, the GCPs were identified in the images and used
for georeferencing.

UAS-based data collection
The processing of images acquired by a UAS consists of a semiautomatic

workflow, in which most of the software uses a similar workflow, following the process
of calibrating the camera, aligning the images, and generating point clouds to generate
the digital surface models (DSM) and the digital terrain model (DTM) (Hugenholtz et
al., 2013; Nex & Remondino, 2014).

The software Agisoft PhotoScan Professional Edition version 1.2.4 (Agisoft LLC,
St. Petersburg, Russia) was used to create the orthomosaic and to generate the DSM and
DTM. This software identifies homologous points in the image and creates a continuous
region by using stereoscopy to generate a point cloud.

The classification of the point cloud was performed to obtain the DSM and DTM,
following the methodology described by Panagiotidis et al. (2016) and Surový et al.
(2018); the parameters defined were maximum angle (deg) = 15, maximum distance
(m) = 0.1, and cell size (m) = 40.
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The DSM, DTM, and orthomosaic created in PhotoScan software were exported in
a GeoTiff file from Quantum GIS software ver. 2.16.3 (QGIS Development Team, Open
Source Geospatial Foundation); georeferenced in the Universal Transverse Mercator
(UTM) coordinate system as WGS 84 zone 23 S datum, according to the coordinates of
the control points collected in the study area; and used to draw a polygon of the area of
interest in the shapefile (.shp) format.

To obtain the plant height, the methodology proposed by Panagiotidis et al. (2016)
was used, in which a canopy height model (CHM) is obtained by subtracting the DSM
from the DTM. For the correct extraction of plant height values, the Focal Statistics tool
of ArcGIS version 10.5 (ESRI, Redlands, California, USA) was used, which identifies
the highest pixel value in the CHM tree canopy, while avoiding lower or larger pixel
values in the tree canopy. The plug-in Point Sampling Tool of QGIS software was used
to obtain the plant height data already tabulated.

The crown diameters of the plants were extracted from the orthomosaic using the
QGIS measurement tool.

All processing was performed for the 2 months of data obtained through the UAS.

Field measurements
The tree height measurement (hm) data and the crown diameter measurement (dm)

data were collected in the same period of image acquisition, June 2017 and May 2018,
with the aid of a measuring tape in 1.0 cm increments, with a maximum length of 2.50 m.
We selected 144 plants, following the sampling methodology proposed by Ferraz et al.
(2017).

All plants sampled were georeferenced using a DGPS receiver.

Statistics and data analysis
For the calculation of the biophysical parameters, Eq. (1) for the Leaf Area Index

(LAI) was used, as reported by Favarin et al. (2002). This parameter was calculated using
field data and data extracted from the UAS images.

(1)

where Dc crown diameter (m) and h plant height (m).
To calculate the biophysical parameter Leaf Area (LA), Eq. (2) was used:

(2)

where Distance between rows (m) and Distance between plants (m).
For the estimation of the crop coefficients ( ), Eq. (3) was used, as proposed by

Villa Nova et al. (2002):

(3)

where Number of plants (0.641 plants ha-1); Leaf Area; Dc Crown diameter (m);
Distance between rows (m); Distance between plants (m), and Crop

coefficient representative of the plant cover between rows ( = 1 in the presence of
transpiring vegetation cover, and = 0.5 absence of transpiring vegetation cover).

To create the map, the average of the four plants of each block was used for the
months of June and May. Electronic spreadsheets were used to calculate and organize
the data, and the GeoDA free software was used for the spatial analysis (Anselin, 2006).
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To estimate the spatial variability of the data from the study area, the spatial weight
-order

neighbors are considered. Thus, = 1.0 if the i-th block shares at least one side with
the j-th block; otherwise, = 0. The pseudo-significance test was applied with
p < 0.05 to validate the statistic.

Moran's global autocorrelation Index (I) proposed by Bailey & Gatrell (1995)
describes the spatial arrangement of objects given by Eq. (4):

(4)

where n number of observations; element of the neighborhood matrix for pair i
and j; sum of the weights of the matrix; and deviations from the mean
( -z), ( -z), and z mean.

According to Ponciano & Scalon (2010), the i ranges from 0 to 1.0, indicating positive
direct autocorrelation, and from 0.0 to 1.0, indicating indirect and negative autocorrelation.

The regression and correlation of the data obtained in the field and by the UAS
were performed using the average of the four plants from each block. To evaluate
whether the estimates were significant at p < 0.05, a t-test was applied. The Root Mean
Square Error (RMSE) were also calculated. The descriptive statistical analyses were
performed in the statistical software R (R Core Team, Vienna, Austria).

RESULTS AND DISCUSSION

The data obtained by the UAS images, on average, were lower than the data
obtained in the field; that is, the values obtained by the UAS images were underestimated
for June 2017 and May 2018. However, the correlation was strong, with Pearson
correlation coefficient with R equal to 0.85, coefficient of determination (R2) equal to
0.73 was found for the values in June 2017. In May 2018 Pearson correlation
coefficient with R equal to 0.89, the coefficient of determination (R2) equal to 0.79 was
found for the values (Fig. 2).

Figure 2. Regression between data measured in the field and obtained by the UAS: a) of June
2017 and b) of May 2018.

a) b)
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Through linear regression, Eq. (5) is proposed to correct the coffee data
estimated from the UAS image, with the correlation of 72 numbers of observations, with
an R value equal to 0.93 and a coefficient of determination (R2) equal to 0.86. According
to Eq. (5), it is possible to estimate the of the coffee plant from data obtained by
the aircraft. This type of equation has practical relevance since it provides an indirect
way of obtaining crop data.

(5)

where measured (m) and estimated by the UAS (m).
The measured in the field and that obtained from the UAS image were

significantly different, with a p value < 0.02.
map (Fig. 3) was proposed based on the biophysical characteristics of the coffee

plants, following the methodology proposed by Villa Nova et al. (2002) and using UAS
data.

Figure 3. map for the months (a) of June 2017 and (b) May 2018.

The differed significantly between months; that is, the null hypothesis was
rejected, and the spatial autocorrelation in the blocks was considered; this
autocorrelation increased with time. In June 2017, a I = 0.228 was observed, and in May
2018, I = 0.286.

As observed in Fig. 3, most of the blocks at the beginning of the experiment, in
June 2017, when the coffee plants were in the vegetative period during the flower
maturation stage, showed values between 0.96 and 1.0. This variation is dependent
on the plant height and crown diameter. For the month of May 2018, when the plants
were in the reproductive period during the fruiting phase, the values were 1.05 for 32
blocks, indicating a homogeneous . According to Oliveira et al. (2007), in the period
of crop establishment, the curve has low values, and when the crop reaches a
maximum canopy, the curve tends to stabilize with close values, a trend consistent with
the data found in this study.

Some studies on recommend values according to coffee crop development, such
as Doorenbos & Pruitt (1997), who proposed a mean value between 0.9 and 1.1 for
adult coffee trees at all stages of development, without specifying the location and
conditions under which these values were obtained. Those values are within a range
greater than that found and recommended in this study (0.96 to 1.05), which is due to
the variety and/or the method used for obtaining .

a) b)
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Arruda et al. (2000) found values equal to 0.73 and 0.75 in the first years of
coffee production and values of 0.87 and 0.93 for coffee plants 7 and 8 years of age,
respectively. The present study found values consistent with the values from that
study, considering that mean values between 0.96 and 1.05 were obtained for coffee
plants 9 and 10 years of age, respectively.

For coffee plants with adequate management and heights of 2.0 to 3.0 m, in a sub-
humid climate, Allen et al. (1998) proposed a between 0.90 and 0.95 and for soil
without plant cover and in the presence of weeds, they proposed a between 1.05 and
1.10, respectively, with reference evapotranspiration estimated by the Penman-Monteith
method - FAO. Those results were slightly higher than those found in the present study
because the maximum value found herein was 1.05, with weeds present in the
interrows; this slight difference in the results can also be attributed to the method used
for obtaining the values.

Villa Nova et al. (2002), for Mundo Novo coffee crops, observed values
between 0.5 and 1.2 and between 0.9 and 1.2, without weeds and with weeds,
respectively, with a density of 4,000 plants ha-1. Despite using a different cultivar, that
study obtained a range close to that found in the present study, when considering the

results with weeds in the interrow.
As observed, the values obtained herein were consistent with the literature, with

some variations according to the stage, age, and variety. Furthermore, the method used
to obtain the values takes into account the plant biophysical characteristics, showing
the sensitivity and consistency of the data, thus confirming its efficiency and adoption
for rational irrigation management in coffee crops (Villa Nova et al., 2002).

Notably, the generated map followed the equation proposed by Villa Nova et
al. (2002), and it was developed for a specific variety. This equation may not represent

for all varieties; however, this methodology is feasible for generating maps using
biophysical data obtained remotely, which would be very useful in irrigation
management.

According to the literature, studies for the quantification of for coffee crops
were performed using agronomic experiments. The advantage of using the methodology
proposed herein is the ability to obtain biophysical parameters of coffee crops remotely,
which is an indirect and nondestructive method of data collection. In addition, it is
necessary to quantify the at the different phases of the phenological cycle of coffee
plants of different ages, which is difficult to do in the field. Thus, using remotes methods
to obtain data from coffee plants allows the collection of crop data in almost real-time,
determining the spatial variability of the crop data, and creating a historical series, thus
favoring more efficient and assertive management.

CONCLUSIONS

This study developed a methodology for estimating using biophysical data
obtained remotely. It is an indirect methodology to obtain data in a non-destructive way.

The estimative showed a strong correlation, R of 0.93, so it is possible to estimate
the of the coffee plant from the data obtained by the aircraft. In addition, the
values found in the study ranged from 0.96 to 1.0 in the vegetative period and from 1.05
in the reproductive period.
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The data found were consistent with the literature; thus, this method is useful for
estimating and for assisting in irrigation management of coffee crops.
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