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Abstract. In this article, power characteristics of a state-of-the-art unmanned ground vehicle (UGV) 
are characterised. It is demonstrated that in terms of power characteristics requirements, purpose-
built computer aided autonomous UGV systems are capable of replacing systems that utilise 
conventional tractors in peat field operations, with milled peat extraction operations as a case 
study. The authors demonstrate the viability of the UGV in achieving optimal mobility capabilities 
in operating on peatland surface. The UGV of interest was assessed for two operations of milled 
peat extraction: milling and harrowing. For both operations, the power consumption of the UGV 
and the drawbar pull of the implements (passive miller and harrower) were measured and 
analysed. The required drawbar pull values of the investigated implements remained in the range 
of 4–8 kN, which corresponded to the drawbar power of 14–36 kW. It was found that the UGV of 
interest is capable of carrying out milled peat operations in terms of traction capacity. However, it 
was found that the power supply capacity to be insufficient, thus requiring an improved solution. 

Key words: agriculture, automation, drawbar pull, drawbar power, robotic and autonomous 
systems, UGV. 

INTRODUCTION 

The introduction and vigorous implementation of Robotic and Autonomous 
Systems (RAS) has been going on for several decades (Lewis & Ge, 2006; Duckett et 
al., 2018; Roldán et al., 2018; Bonadies & Gadsden, 2019; Moysiadis et al., 2021), but 
so far the successful utilisation of such systems has been limited. The main constraints 
described as unreliable guidance systems, communications delays (Aravind et al., 2017), 
lack of supporting infrastructure (Hajjaj & Sahari, 2016). As well, it is noted that the 
overall cost of robotic systems performing agricultural tasks have not yet reached a 
critical cost value that supports a widespread use of these systems (Bechar & Vigneault, 
2016; Bechar & Vigneault, 2017). 

To conduct computer aided agricultural tasks, the first option is to equip current 
tractors with sensors (Reina et al., 2016) and remote-control technology (Adams, 2019), 
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but as the RAS technology matures, it has become clear that different tasks can be 
performed more efficiently with the supporting autonomous capabilities (Kurita et al., 
2017). Although tractors have undergone over a century of development and their design 
makes them universally adaptable to most tasks in agriculture, their efficiency is optimal 
only for certain operations (Bochtis et al., 2019). 

Current autonomous functions software solutions mainly focus on fleet monitoring, 
particularly concerning the vehicles’ position and status; however, in most cases they 
are not designed to automate production. Whereas UGV solutions in both military and 
civilian markets are focused on systems in which a single operator controls only one 
machine (BAE Systems, 2021; ECA Group, 2021), the capability of controlling a fleet 
of multiple UGV-s is not available on the market. By now, the level of autonomy is 
approaching the state of development that will allow the introduction of commercial  
off-the-shelf unmanned systems soon. 

Peat fields are mostly remote areas closed to the public (Alakangas et al., 2012), 
therefore a safer and suitable candidate for piloting robotic systems with autonomous 
functions. In 2009, a robotic system with three customised autonomous tractors successfully 
performed peat extraction tasks (Johnson et al., 2009). This experiment, although over a 
decade old, demonstrated that automated milled peat extraction can be feasible. 

Prerequisites for these developments are that the autonomous functions are 
designed in a way that supports the automation, making them the enabler of the robotic 
system, such as: 

1. Teleoperation (Small et al., 2018). 
2. Obstacle Detection and Avoidance (Zhou et al., 2012; Tabor et al., 2015). 
3. Waypoint Navigation (Bayar et al., 2016; Silverberg & Xu, 2019; Madridano et 

al., 2021). 
4. Formation Control (Kamel et al., 2020). 
5. Swarming �%D\ÕQGÕU��������7DQ�HW�DO��������� 
Depending on various factors (quality of the peat, production area size, etc.), the 

production of milled peat can be carried out differently (Alakangas et al., 2012): 
1. re-ridging (Peco) method; 
2. conveyer belt (Haku) method; 
3. mechanical harvesting method; 
4. vacuum harvesting method. 
For all these methods, the first step is milling. In the case of milling, a thin layer of 

peat is removed from the deposit and left to dry. Milling usually takes place during the 
day, when the moisture content of the air is optimal for drying the peat. When the 
removed layer of peat is dry enough, the next step is to turn the peat with the operation 
called harrowing. Harrowing is meant to speed up the drying process even further. 
Depending on the weather conditions (rain, humidity, amount of solar radiation, wind), 
the number of turns can be 1–5. If it is no longer necessary to perform the harrowing, 
the peat is collected according to the method. For example, the Haku method uses a 
ridger, a conveyer belt collector, and trailers. The choice of method depends on various 
factors, such as the quality of the peat (dark peat, white peat), the surface area to be 
extracted, etc. 

Although the different stages of operation have different energy requirements, it 
has become a tradition for all of these stages of operation to use general-purpose tractors 
with high power output and high-fuel-consumption internal combustion engines. The 
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reason for this is that such tractors, with their versatility, are able to do carry out a variety 
of operations, depending on the energy needs. This versatility makes the use of tractors 
flexible, while for lower energy operations, large tractors are clearly oversized (Casals 
et al., 2016; He et al., 2019). 

The underlying hypothesis of this research is that optimally designed automated 
UGVs can replace conventional tractors in milled peat extraction operations in terms of 
drawbar pull and energy consumption. To do this, the power and energy characteristics 
of one representative robotic system of interest are assessed by experimental setup. The 
robotic system of interest was chosen by the fact that it met the requirements of peatland 
terrain tractability and drawbar pull of the milled peat extraction implements. The 
novelty of the concept of utilising automated UGVs for milled peat extraction is that the 
fleet of conventional tractors can be replaced with a centrally controlled fleet of low-
fuel-consumption robotic agents. It has been shown previously (Kägo et al., 2021) that 
this kind of development has the potential to reduce the demand for labour, thus lowering 
overall operational costs and environmental impacts. 

 
MATERIALS AND METHODS 

 
For the field experiments, the Multiscope by the Estonian UGV-manufacturer 

Milrem Robotics is used (Fig. 1) (Milrem, 2021). The platform consists of two track 
modules which are mechanically and electrically connected to each other. Due to the 
tracks, the UGV has suitable properties for moving in peatlands. The diesel-hybrid 
powertrain consists of a) a generator, b) a battery pack and c) two electric motors, one 
for each track module. As the 
generator constantly charges the 
battery pack, the batteries give out 
power for the electric motors which 
in turn generate the track propulsion. 
The main characteristics of the UGV 
are depicted in Table 1. 

The control techniques applied 
to the UGV of interest are 
categorised as following (Fig. 2): 
1. Remote control (Stevenson et 

al., 2019) 
a. Line-of-Sight remote control 

(LOS); 
b. Beyond-Line-of-Sight 

remote control (BLOS). 
2. Wired control. 
3. Control by AI. 

‘Remote Control’ means that 
the UGV is controlled by the operator 
using an interface (one- handed,  
two- handed, control station). 

 

 
 

 
 

Figure 1. Structure diagram of the robotic system 
of interest used in the field measurement showing 
the position of the a) battery pack, b) track 
modules, c) fuel tank and d) the diesel generator. 

The operator gives commands to the UGV through the interface based on direct 
visual observation or by using sensor information (for example, camera feed) from the 
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UGV sensors. The control unit can have a direct Line-of-Sight (LOS) contact with the 
UGV or, if the UGV is out of visual range, have a Beyond-Line-of-Sight (BLOS) contact. 
In the last case, the control of the UGV is conducted only based on sensor information. 

The control techniques applied to the UGV of interest are categorised as following 
(Fig. 2): 
1. Remote control (Stevenson  

et al., 2019) 
a. Line-of-Sight remote 

control (LOS); 
b. Beyond-Line-of-Sight 

remote control (BLOS). 
2. Wired control. 
3. Control by AI. 

‘Remote Control’ means that 
the UGV is controlled by the 
operator using an interface  
(one-handed, two-handed, control 
station). The operator gives 
commands to the UGV through 
the interface based on direct visual 
observation or by using sensor 
information (for example, camera 
feed) from the UGV sensors. The  

Table 1. The main characteristics of the UGV under 
evaluation 
Name Value 
Dimensions (L×W×H) 240×200×115 cm 
Maximum slope 60% 
Maximum side slope 30% 
Ground clearance 40–60 cm 
Maximum speed 20 km h-1 
Net weight 1,630 kg 
Payload capacity 1,200 kg 
Specific ground-pressure 16.7 kPa 
Maximum traction force 21 kN 
Line of sight (LOS) control range 1,500 m 
Engine power (2×19 kW) 38 kW 
Control Remote Control  

(LOS, BLOS), wired, 
‘Waypoint Navigation’, 
‘Follow Me’ 

 

control unit can have a direct Line-of-Sight (LOS) contact with the UGV or, if the UGV 
is out of visual range, have a Beyond-Line-of-Sight (BLOS) contact. In the last case, the 
control of the UGV is conducted only based on sensor information. 

 

 
 

Figure 2. The control of the UGV is divided into three subcategories: a) remote control, b) wired 
control, c) control by AI. The control system is responsible for the d) acceleration, e) braking, 
f) steering, and g) tool control. 
 

‘Wired Control’ is used mostly for cases, where the UGV is relatively near to the 
operator, for example, in operating in a maintenance area. 

In cases, where the safety concerns are relatively low (for example, operating the 
UGV in a mostly empty peat field), the control of the UGV can be handed over to the 
autonomous functions (to the AI – $UWLILFLDO�,QWHOOLJHQFH). 
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Figure 3. The ‘Control by the AI’ consists of five major cornerstones: a) localization and 
mapping, b) perception, c) navigation, d) backbone and support structure, and e) control system. 
 

The ‘Control by AI’ is based on the following (Fig. 3). First, is has to be 
determined, where the vehicle is located. For that, localization and mapping techniques 
are used, which both rely on sensor information. Different types of sensors are used: 

1. LIDARs (Li & Ibanez-Guzman, 2020). 
2. Cameras (Chapel & Bouwmans, 2020). 
3. RADARs (Javadi & Farina, 2020). 
4. Vehicle movement sensors. 
5. INS (Inertial Navigation System), which consist of (Konrad et al., 2018) 

a. GNSS sensor; 
b. Inertial Measurement Unit (IMU). 

After the position of the vehicle is determined, it is necessary to know what it is 
surrounded by. For that, different types of perception techniques are used, for example: 

1. Object Detection: find objects based by the output of the sensors. 
2. Object Tracking (Luo et al., 2021): provide information about the location of 

objects over time (for example, a person in front of the UGV used in ‘Follow Me’ mode 
(Islam et al., 2019)). 
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3. Object Classification (Kim et al., 2021): tell the outputs of the sensor what it is. 
For example, in camera view, is the object a road, car, person, etc. 

4. Traversablity (Aggarwal & Kumar, 2020): provide information about the 
surroundings around the UGV, where it can and cannot drive, and how well it is possible. 
Includes sensor fusion (Sock et al., 2016). 

When the positioning and the surroundings are confirmed, then, based on operator 
input, the ‘UGV Navigation Control’ conducts trajectory calculations to be used by the 
UGV. 

Based on the calculated trajectory, the ‘Control System’ starts moving the UGV. 
Basically, the vehicle control system conducts three high-level tasks: 1) accelerating, 
2) braking, 3) steering. Additional tasks during the drive, such as moving the tools, are 
also performed by the ‘Control System’. 

All localization, mapping, and perception is based on an autonomous navigation 
backbone with support structures and various sensors (LIDARs, camera, vehicle motion 
sensors, RADARs, Inertial Navigation System (INS) consisting of GNSS and Inertial 
Measurement Unit (IMU)) (Zhu et al., 2019). 

For this experiment, the UGV was controlled by the ‘LOS remote control’. 
Although other control methods can be used, this method was chosen because this 
experiment (assessment of power characteristics of the UGV) does not require a high 
level of autonomy. The goal of the experiment was to provide evidence that the UGV of 
interest is capable of performing operations peat fields. 

The UGV was assessed for two operations of milled peat extraction: milling and 
harrowing. For both operations, the power consumption of the UGV and the drawbar 
pull of the implements, passive miller and harrower (Fig. 4), were measured (Adamchuk 
et al., 2016; Bulgakov et al., 2020). The towed implements were used as if it were used 
by a conventional tractor–no changes were made in their dimensions or other parameters. 

 

 

 
 

Figure 4. (up) The passive miller and (down) the harrower used in the experiment. For both 
implements the drawbar pull and drawbar power were determined. 
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The field measurements were carried out on the peat fields of Kraver AS in Viljandi 
County, Estonia (coordinates 58.542467, 25.860802) with ambient temperature of  
10–12 °C, wind speed 2–3 m s-1, no rain, relative air humidity 80%. 

The data obtained from field measurements allowed the evaluation of the capability 
of the UGV to operate in peatland operations. 

The experimental setup consists of two parts: 
1. The measurement of the drawbar pull of two peat extraction implements: 

a) harrower, b) passive miller. The two peat extraction implement are described in Table 2. 

The values were chosen that they would correspond to the typical towing speeds 
for peat extraction equipment. By measuring simultaneously the drawbar pull F and 
operational speed Y, the power consumption Pi of the implements can be determined. As 
the UGV was assigned to carry out milling and harrowing, the current I and the voltage  
U of the power system were measured. The recorded values were used to assess the draft 
power of the UGV. 

 
RESULTS AND DISCUSSION 

 
On Fig. 5 and Fig. 6, the results for the drawbar pull measurements for the passive 

miller and for the harrower are shown. For the sake of clarity, only two operating speed 
results are shown here (4 km h-1and 14 km h-1). The oscillating lines are fitted with linear 
trendlines which presents the mean drawbar pull. For both implements, typical values 
remain in the range of 4–8 kN. Note that as the implements are dragged, peaks occur, 
which are associated with implement getting stuck in the soil. 

On Fig. 7, peak and mean drawbar pull values at different operating speeds are 
plotted. Note how the measurement data follows a polynomial (quadratic) dependence 
trendline. In this graph, two types of drawbar pull values must be distinguished: 

1. ‘Mean Operational Drawbar Pull’ indicates the resistive forces measured during 
operation averaged over time. 

2. ‘Peak Operational Drawbar Pull’ indicates the maximum force measured during 
the test. This short-term value provides an opportunity to optimally estimate mobility 
requirements. 

2. The measurement of generated 
power by the UGV. 

To measure the drawbar pull, a 
force transducer is connected in series 
between the towed implement 
(a passive miller and a harrower) and the 
drive mechanism. In this case, KAF 
100 kN force transducer by A.S.T 
Gruppe was used (KAF-S Force 
Transducer, 2021). The implement is 
towed for at least 10 s so that the 
drawbar pull values can be recorded. 
The data is recorded with a time interval 
of 0.01 s. The previous procedure is 
repeated at varied speeds. 

 
Table 2. The main characteristics of the towed 
peat extraction implements 
Name Value 
Model JLK-19S (Peatmax, 2021) 
Producer Peatmax (Finland) 
Working width 12–18 m 
Working depth 20 mm 
Weight 1,800 kg 
Name Value 
Model 84306900 (Elva EPT, 2021) 
Producer Elva EPT (Estonia) 
Working width 9.5 m 
Working depth 20 mm 
Weight 900 kg 
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Figure 5. Measured and mean drawbar pull values for the passive miller and for the harrower at 
operational speed of 4 km h-1. The oscillating lines (measured drawbar values) are fitted with 
linear trendlines which presents the mean drawbar pull. 
 

 
 
Figure 6. Measured and mean drawbar pull values for the passive miller and for the harrower at 
operational speed of 14 km h-1. The oscillating lines (measured drawbar values) are fitted with 
linear trendlines which presents the mean drawbar pull. 
 

 
 
Figure 7. Mean and peak operational drawbar pull values for the passive miller and for the 
harrower at different operational speeds (km h-1). Here, the dots present the measurement results 
(mean values) and the lines act as the polynomial curve fit. 
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Based on measured data (operational speed Y and drawbar pull F), the drawbar 
power for a passive miller and for a harrower can be calculated. The calculated power 
consumption values are plotted on Fig. 8. In this graph, two types of drawbar power must 
be distinguished: 

1. ‘Mean Drawbar Power’ indicates the power required during operation averaged 
over time. 

2. ‘Peak Drawbar Power’ indicates the maximum power measured during the test. 
This short-term value provides an opportunity to optimally estimate power consumption 
requirements. 

 

 
 

Figure 8. Mean and peak drawbar power values for the passive miller and for the harrower  
at different operational speeds (km h-1). Here, the dots present the measurement results  
(mean values) and the lines act as the polynomial curve fit. 

 
Based on measured data (current I and voltage U of the UGV power system), draft 

power of the UGV can be given (Figs 9 and 10). 
 

 
 

Figure 9. UGV draft power for the harrower: a) speed 5 km h-1; a*) speed 5 km h-1 with linear 
trendline 15.2 kW; b) Speed 8 km h-1; b*) speed 8 km h-1 with linear trendline 19.5 kW;  
c) speed 14 km h-1; c*) speed 14 km h-1 with linear trendline 35.8 kW. 
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The authors observed that the robotic system of interest capable of performing in 
peat extraction operations. No constraining slip was detected; the traction and power 
output of the UGV were found to be sufficient. Also, it was found that the readiness level 
of autonomous functions, such as ‘Waypoint Navigation’ and ‘Remote Control’ 
(‘Teleoperation’) are sufficient. 

 

 
 

Figure 10. UGV draft power for the passive miller: a) speed 5 km h-1; a*) speed 5 km h-1 with 
linear trendline 14.2 kW; b) Speed 8 km h-1; b*) speed 8 km h-1 with linear trendline 20.6 kW; 
c) speed 12 km h-1; c*) speed 12 km h-1 with linear trendline 34.7 kW. 

 
However, the energy storage capacity requirement was not met (Ueka et al., 2013). 

At lower operational speeds (up to 4–5 km h-1), the UGV draft power was in a suitable 
range to perform long-term–the generator output matched the draft power of the 
implements. As the operational speeds increased (up to 14 km h-1), the generator lacked 
the capacity to maintain sufficient power output to operate in the long run. To effectively 
operate in peat extraction operations, the energy generation and storage capacity must 
be improved. 

To keep a steady operational speed, the passive miller must be towed with a higher 
draft force. As it turns out, for both implements, the required peak draft force is roughly 
the same. The oscillating behaviour is caused by two reasons: 

1. Steering corrections (Moriwaki, 2005). 
2. Uneven resistive characteristics of the soil which results the implement getting 

stuck for brief moments (Shahgoli et al., 2010). 
Based on the test data, the use of an alternative powertrain can be proposed (Soltani 

et al., 2019). Most of the traction is provided by the main source of propulsion (diesel 
generator, battery pack and two electric motors). Additional power can be provided by a 
secondary power source (such as a ‘fuel cell’). This would address the issue on energy 
storage capacity. 

When comparing the data from Fig. 8, Fig. 9, and Fig. 10, then it is shown that the 
use of this UGV shows a promising outlook, since for all operational speeds and for both 
implements, the UGV draft power exceeds the required drawbar power in the near of 
10 kW. This value corresponds to the idle running power of the UGV. 

Given the restriction that unauthorised personnel have limited access to the peat 
extraction sites, the authors of this paper state that this robotic peat extraction system has 
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the readiness level to be safely operated, thus making it close of entering the commercial 
market. 

In summary, additional development for this robotic system is recommended with 
the main challenges identified as following: 

1. The development of the ‘Energy Generation and Storage Capacity’ to effectively 
operate in peat extraction operations. Additional development of the system is 
recommended, to provide a full 8–12 h practical work time. It can be solved based on 
additional batteries (Solectrac, 2021) which would also increase the mass and influence 
the efficiency of the system; or based on fuel cell energetics which is commercially 
available for that kind of situation (Mekhilef et al., 2012; US Department of Energy, 
2016; Papageorgopoulos, 2019; Ma et al., 2021). 

2. The further development of autonomous functions such as the ‘Waypoint 
Navigation System’ (Kurita et al., 2017; Atyabi et al., 2018) the ‘Obstacle Detection and 
Avoidance’ (Kamel et al., 2020; Badue et al., 2021). 

Furthermore, possible next steps are to add other implements to the robotic peat 
extraction system and to validate the results based on experiment data. As implements 
that do not require an external power supply were investigated in this work (harrower 
and passive miller), the next step would be to determine the capability of the robotic 
system using peat implements with an external power supply (e.g. an active miller). In 
addition to this, current measurement results are based on standard peat extraction 
implement solutions - no optimisation of existing implements is done here. Fundamentally, 
it would be possible to optimise the peat extraction implements (for instance, reduce the 
width of the implements N times), but this would require a separate analysis. 

The concept of using the UGV in milled peat extraction is derived from the idea 
that the known mobility requirements (low ground pressure, terrain tractability, 
implement drawbar pull, power requirements) in the peat extraction industry match the 
capabilities of the robotic system of interest. However, it must be noted that this UGV is 
originally not designed for peat extraction. By now, the system lacks proper safety 
measures in terms of operating in an environment known for its fire hazards (Tissari et 
al., 2006). The authors suggest adding purpose-built spark arrestors to mitigate the 
subject. 

 
CONCLUSIONS 

 
In this study, the conventional tractor-based peat extraction system was replaced 

by an UGV-based system. The main difference comes from the fact that the human 
operator is removed from the wheel, which gives an opportunity to dimension the new 
system for peat field work. The current state of the robotic system of interest is such that 
it allows the test to be repeated in each peat field with a sufficient safety level, provided 
that no unauthorised persons enter it. 

After the requirements and experimental data analysis, it was concluded that the 
robotic system under study can perform peat extraction operations (milling and 
harrowing): 

1. The power characteristics of the robotic system of interest are suitable for the 
milled peat extraction implements tested in this experiment (harrower and passive 
miller). 
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2. The energy demand characteristics were found sufficient for lower operational 
speed (up to 4–5 km h-1). However, at higher operational speeds (up to 14 km h- 1), the 
power supply capacity to effectively operate in milled peat extraction operations was 
found to be insufficient, thus requiring an improved solution. 
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