Tag Archives: fibre nettle

259–268 D. Streikus, A. Jasinskas, M. Arak, E. Jotautienė1, R. Mieldažys, S. Čekanauskas and Z. Jankauskienė
Investigations of fibre plants preparation and utilization of solid biofuels
Abstract |
Full text PDF (297 KB)

Investigations of fibre plants preparation and utilization of solid biofuels

D. Streikus¹, A. Jasinskas¹*, M. Arak², E. Jotautienė1, R. Mieldažys¹, S. Čekanauskas³ and Z. Jankauskienė⁴

¹Aleksandras Stulginskis University, Faculty of Agricultural Engineering, Institute of
Agricultural Engineering and Safety, Kaunas-Akademija, Studentu str. 15A, LT-53361
Kaunas r., Lithuania
²Estonian University of Life Sciences, Institute of Technology, Fr.R. Kreutzwaldi 56,
EE51014 Tartu, Estonia
³Aleksandras Stulginskis University, Experimental Station, Kaunas-Akademija,
LT-53361 Kaunas r., Lithuania
⁴Lithuanian Research Centre for Agriculture and Forestry, Upyte Experimental Station,
Linininku str. 3, Upyte, LT-38294 Panevezys r., Lithuania
*Correspondence: algirdas.jasinskas@asu.lt

Abstract:

Presented research results of technological-technical means and operations for solid biofuel preparation: chopping, milling, pelleting and burning of fibre plants – 3 sorts of fibre hemp (Beniko, Bialobrzeskie and Epsilon 68) and fibre nettle (sown in 60 x 60 cm). These fibre plants were grown in the experimental fields of Lithuanian Research Centre for Agriculture and Forestry, Upytė Experimental Station, and in Aleksandras Stulginskis University were investigated the technical means of these plants preparation and usage for energy purposes. It was used the standard methodology for solid biofuel preparation of fibre plants, and was investigated the technique for plant chopping, milling and pelleting. There were determined fibre plant mill fractional composition while usage the hummer miller prepared mill. There were determined the fibre plant pellet quality indicators – moisture content and bulk density. The fibre plant pellet moisture content ranged from 6.4% to 8.8%, and pellet density reached 1,082.7–1,186.2 kg m-3 DM (dry matter). Pellet elemental composition, ash content and calorific value were determined at the Lithuanian Energy Institute. The ash content after the burning of fibre plant pellet was not high and varied from 3.6 to 5.9%. Determined net calorific value of fibre hemp and fibre nettle dry mass was relatively high 17.2–17.5 MJ kg-1, it was close to calorific value of some wood species.

Key words:

, , , , ,