Relation of energy content variations of straw to the fraction size, humidity, composition and environmental impact
S. Kalinauskaitė¹,*, A. Sakalauskas¹, E. Šarauskis¹, A. Jasinskas¹and M. Ahlhaus²
¹Aleksandras Stulginskis University, Studentų g. 11, Akademija, Kauno r.LT-53361, Lithuania; *Correspondence: solveiga.kalinauskaite@gmail.com
²Fachhochschule Stralsund, Institut für Regenerative Energie Systeme (IRES),Zur Schwedenschanze 15, 18435 Stralsund, Germany
Abstract:
Biomass is the major source of renewable energy, the use of which is very importantin energy, environment and economical aspects. Biomass enables the replacement of fossilfuels, the importance of biomass usage is related to global warming questions. Biomassmoisture content is one of the main factors affecting straw preparation for the usage cost.In this research the main focus is on straw and different biomass composition and how itinfluences the solid biofuels preparation for usage, paying attention to straw fraction, humidity,composition and finally how it influences the energy and environmental aspects. Testedsamples consist of different composition- raw straw, 100% yellow straw pellets, 100% greystraw pellets, 98% straw pellets with 2% additives, 50% straw and 50% hay pellets, 49% strawand 49% hay pellets with 2% additives, 100% hay pellets, 98% hay pellets with 2% additivesand additionally two samples of straw briquettes with different chop size – (20 mm) and(30 mm and 10 mm). This research pays attention to the main material characteristics –moisture value, ash content, HHV (higher heating value), pyrolysis coke. Research results willhelp to find the best biomass pellet and briquette composition for solid biofuel usage. Duringthe research it was found that the lowest moisture value was 98% hay pellets with 2% CaOadditive – 5.79%. Highest amount of ash value was found in 50% straw and 50% haycomposition pellets – 0.021 g. Highest amount of HHV were tested pellets which consisted of98% hay with 2% CaO additives. Highest amount of pyrolysis coke in organic and dry matterwere in 100% yellow straw tested samples.Achieved results will help to estimate material fraction, humidity and composition on biomasspreparation for conversion steps, following biomass usage energy and environmentrequirements. These research results will help to realise further tasks of agricultural biomassusage in practice.
Key words:
ash, biomass, composition., energy, environment, fraction, humidity, straw