Tag Archives: tending activities

211-218 O. Sada, E. Mikson and B. Reppo
Ammonia emission in cowsheds and pigsties during the summer periood
Abstract |
Full text PDF (164 KB)

Ammonia emission in cowsheds and pigsties during the summer periood

O. Sada, E. Mikson and B. Reppo

Institute of Technology, Estonian University of Life Sciences, Kreutzwaldi 56,
EE51014 Tartu, Estonia

Abstract:

As is known, cows in uninsulated cowsheds can tolerate lower temperatures much better than higher temperatures, so we can say that these buildings are well suited for animals, although there are problems with workers and the working environment in uninsulated cowsheds in extreme cases, during very low and high outside temperatures. The goal of this study was to identify the outdoor climate impact on the indoor climate in cowsheds with 420, 500 and 500 cow places during winter and summertime. For that, indoor and outdoor temperature, relative humidity and indoor ammonia content were measured simultaneously. The processed results are well applicable when designing new cattle housing or improving the indoor climate of already existing uninsulated cowsheds. Building of large pigsties with deep litter and without litter which use liquid manure removal systems has become a wide practice nowadays. Indoor climate parameters of the working environment have an impact on the human capacity for work and the productivity of animals. Enlargement of pigsties is accompanied with problems regarding the achievement of the required indoor climate for the working environment. For the purpose of studying the pigsties with different animal-keeping technologies and the simultaneous effect of temperature and relative humidity on the emission ammonia content in the air of a pigsty were measured in summer above a pig-pen at the height of 1.5 meters from the floor and were measured daily. Data logger equipment, relevant sensors and content of ammonia in the air was measured for the study by using Gas Monitor Pac III equipment. Measurement results were statistically processed by using the computer programmes AMR Win Control, Pac III Software3.nn, SAS and MS Excel.

Key words:

, , , , , , , , , , , , ,




67-78 O. Sada and B. Reppo
Indoor climate of pigsty with deep litter and liquid manure system in summer
Abstract |
Full text PDF (278 KB)

Indoor climate of pigsty with deep litter and liquid manure system in summer

O. Sada and B. Reppo

Institute of Technology, Estonian University of Life Sciences,Kreutzwaldi St. 56, 51014 Tartu, Estonia; e-mail: boris.reppo@emu.ee

Abstract:

Construction of big deep-litter pigsties and pigsties without litter (using liquid manure systems) is becoming more extensive. Due to lack of knowledge concerning animal-keeping in big pigsties, it has become necessary to study the work environment in pigsties and, in particular, their indoor climate. In order to determine the impact of the outdoor climate, different methods for animal-keeping and tending activities on indoor climate during summertime, the air temperature, relative humidity, air velocity and contents of oxygen, carbon dioxide and ammonia were measured on a daily basis at the height of 1.5 m from the floor above the pigsty in the centre of deep-litter (800 fattening pigs) and liquid manure system (600 young pigs) pigsties. Simultaneously outdoor air temperature and relative humidity were measured. Data Logger equipment with relevant sensors and Gas Monitor Pac III were used for studying the indoor climate. Hydrolog equipment was used for measuring the parameters of outdoor climate. Measurement results were processed by using computer programmes AMR Win Control, HW3 and MS Excel.It turned out that during summertime the indoor climate of pigsties was most affected byoutdoor climate and tending works. The daily average indoor temperature (17.04 and 17.60°C respectively; outdoor temperature, 18.15 and 8.75°C) and relative humidity (68.11 and 78.59% respectively; outdoor relative humidity, 71.88 and 84.19%) remained within recommended limits for animals in the deep-litter pigsty and in the pigsty without litter. However, partial floor heating had to be used in the morning in order to ensure optimum indoor temperature and relative humidity in the pigsty for young pigs. Due to good ventilation in the pigsties the daily average contents of carbon dioxide (0.06 and 0.07%) and ammonia (20.9 and 8.7 ppm) remained within standard limits. Ammonia content in pigsties was higher during tending works, reaching 43 and 27 ppm. As a result of the study, the graphical and empirical relationship was determined between ammonia concentration and indoor air both in terms of air temperature and combined effect of temperature and relative humidity.

Key words:

, , , , , , , , ,