Tag Archives: haulm

xxx V. Bulgakov, S. Ivanovs, M. Arak and J. Olt
Theoretical research of force interaction of a flexible cleaning blade with a beet root head
Abstract |
Full text PDF (855 KB)

Theoretical research of force interaction of a flexible cleaning blade with a beet root head

V. Bulgakov¹, S. Ivanovs², M. Arak³ and J. Olt³

¹National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony street 15, Kyiv UA 03041, Ukraine
²Latvia University of Life Sciences and Technologies, Liela street 2, LV 3001 Jelgava, Latvia
³Estonian University of Life Sciences, Institute of Technology, Kreutzwaldi 56, EE 51006 Tartu, Estonia
*Correspondence: semjons@apollo.lv

Abstract:

The most common technology of removing the sugar beet haulm in the world is a continuous cut of the entire mass of the green haulm with further additional removal of the upper parts of the sugar beet heads, which is carried out without extracting the roots from the ground. This is the scheme according to which most top harvesting machines, manufactured in the world, now operate. However, we have found in our studies that, due to additional cutting off the upper parts of the root crop heads, up to 10% of the sugar-bearing mass is lost. Besides, there is an urgent need for immediate processing of the sugar beet root crops, as losses of the sugar juice occur, and bacteria enter inside of the root crop through the cut-off part, causing rotting. Therefore, a more favourable operation for harvesting root crop tops is not cutting off their heads but cleaning them from the residues of the foliage. In addition, the operation of cleaning the sugar beet roots from the residues of the foliage is subject to rather high requirements due to the absence of the green and dry residues on the heads of the roots, as well as the losses and damage of the root crops themselves. The purpose of this investigation is to develop a theory of the force interaction of the flexible cleaning blade with the sugar beet head in the process of its cleaning when the blade is mounted on the vertical driving shaft. The methods used of the investigation are those of modelling, higher mathematics and theoretical mechanics, as well as programming and numerical calculations on the computer. As a result of the research, an equivalent scheme was developed and a mathematical model was constructed describing the force interaction of the flexible cleaning blade with the surface of the sugar beet root.

Key words:

, , ,




358–370 V. Bulgakov, S. Pascuzzi, M. Arak, F. Santoro, A.S. Anifantis, Y. Ihnatiev and J. Olt
An experimental investigation of performance levels in a new root crown cleaner
Abstract |
Full text PDF (773 KB)

An experimental investigation of performance levels in a new root crown cleaner

V. Bulgakov¹, S. Pascuzzi², M. Arak³, F. Santoro², A.S. Anifantis², Y. Ihnatiev⁴ and J. Olt³*

¹National University of Life and Environmental Sciences of Ukraine, 15 Heroyiv Oborony street, UA03041 Kyiv, Ukraine
²Department of Agricultural and Environmental Science University of Bari Aldo Moro, Via Amendola, 165/A, IT70125 Bari, Italy
³Estonian University of Life Sciences, Institute of Technology, Kreutzwaldi 56, EE51006 Tartu, Estonia
⁴Tavria State Agrotechnological University, 18 B, Khmelnytsky Ave, UA72310 Melitopol, Ukraine
*Correspondence: jyri.olt@emu.ee

Abstract:

For the purposes of carrying out field experiments using the vertical-type cleaner with its elastic cleaning blades to remove haulm residues from the crowns of standing roots, the programme for this process and the technique behind it have both been developed by basing the process on the measurement of the volume of haulm residues that are left on the root crowns after they have been cleaned by a cleaning tool that operates at pre-set values in terms of its translational velocity, its height above the soil surface, and its rate of revolution. In addition, the cleaner’s energy-and-force performance has also been determined. In this process, the new laboratory and the field experimental unit have been put together. The unit comprises a rear-mounted root crown cleaner of the rotary type with a vertical axis of rotation. During the field experiments, the general-purpose tractor which carries it moves at a pre-set velocity as registered by the track measuring wheel; the general height of the cleaning tool’s position is set within the specified range by the use of two pneumatic feeler wheels that are equipped with adjustment mechanisms. The results of the completed investigations have been statistically processed with the use of the regression analysis and correlation analysis methods. On the basis of the developed multiple-factor experiment technique, empirical mathematical models have been generated in the form of regression equations for the process of cleaning the crown’s of sugar beet roots. In accordance with the results of the calculations, it has been established that the translational velocity of the implement has the greatest level of impact on the volume of haulm residue that remains on the spherical surfaces of root crowns after cleaning. The rate of rotation for the vertical cleaning rotor and its height above the soil surface which are controlled by the two pneumatic feeler wheels have a lesser effect on the process under consideration.

Key words:

, , , , ,




1931-1949 V. Bulgakov, V. Adamchuk, M. Arak and J. Olt
The theory of cleaning the crowns of standing beet roots with the use of elastic blades
Abstract |

The theory of cleaning the crowns of standing beet roots with the use of elastic blades

V. Bulgakov¹, V. Adamchuk², M. Arak³ and J. Olt³*

¹National University of Life and Environmental Sciences of Ukraine,
15 Heroyiv Oborony street, UA03041 Kyiv, Ukraine
²National Scientific Centre, Institute for Agricultural Engineering and Electrification,
11 Vokzalna street, UA08631 Glevaкha-1, Vasylkiv District, Kiev Region, Ukraine
³Estonian University of Life Sciences, Institute of Technology, 56 Kreutzwaldi street,
EE51014 Tartu, Estonia
*Correspondence: jyri.olt@emu.ee

Abstract:

A standing beet root crown cleaner has been designed. The design comprises the vertical drive shaft that carries two flat elastic cleaning blades installed on axes and connected through the articulated connection. The aim of the study was to develop the new theory of cleaning the crowns of standing roots with the use of an elastic blade installed on the vertical drive shaft in order to determine its optimal design and kinematic parameters. The first step was to design an equivalent schematic model of the interaction between the elastic cleaning blade installed on the vertical drive shaft and the spherical surface of the beet root fixed in the soil. The interaction between the blade and the root’s crown took place at the point, where all the forces that can arise during such interaction are applied. A three-dimensional coordinate system was set and the design and kinematic parameters of the considered interaction were designated. Using the original differential equations projected on the set coordinate axes, the system of four nonlinear differential equations of the three-dimensional motion of the elastic cleaning blade on the spherical surface of the root crown was set up, then it was transformed into the system of two differential equations in the normal form. Further, to determine the force that strips off the remaining haulm, which is part of the obtained system of differential equations, the problem of its analytical determination was solved separately. Also, the additional equivalent schematic model of the interaction between the elastic blade as a cantilever beam and the root’s crown was designed, the differential equation of the beam’s deflection curve (taking into account the beam’s simultaneous bending and twisting) was set up and, on the basis of it, the projections of the stripping force on the coordinate axes were found. The values of the force were substituted in the earlier obtained system of differential equations.

Key words:

, , , ,